The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air

H.L. Xu*, A. Azarm, J. Bernhardt, Y. Kamali, S.L. Chin

Department of Physics, Center of Optics Photonics and Laser (COPL), Université Laval, Québec City, Québec, Canada G1V 0A6

1. Introduction

Filamentation generated by high-power, ultrafast laser pulses in the atmosphere has attracted a lot of interest in recent years because of its promising applications in areas such as remote sensing of chemical/biological agents, generation of few cycle pulses and lightning control [1–8]. The formation of femtosecond laser filamentation is by now well understood. Filaments appear as a result of a dynamic interplay between self-focusing and defocusing of plasma produced by multiphoton/tunnel ionization of air molecules. This balance gives the laser intensity inside the filament core of about 5×10^{13} W/cm² (intensity clamping), and creates a long but weak plasma column along the femtosecond laser pulse propagation [9,10]. It has been shown that the plasma filament can persist over several tens of meters [11,12], and its formation has been observed as far as a few kilometers in the atmosphere [13].

The properties of the plasma filament such as the density, lifetime, temperature and diameter have been extensively investigated in order to improve/optimize the efficiency of many nonlinear physical/chemical processes (see e.g. Ref. [3] and references therein). To characterize the plasma filament, one method is to utilize the fluorescence emission from the air molecules induced by the filamentation. For instance, Théberge et al. have experimentally demonstrated that the plasma density and diameter are strongly dependent on the external focusing based upon side imaging of the nitrogen fluorescence and longitudinal diffraction techniques [14]. Arevalo and Becker have numerically analyzed the role of the combined effect of self-focusing, geometrical focusing and plasma defocusing in the formation of the fluorescence signal during the filamentation of an ultrashort laser pulse in nitrogen molecular gas [15]. Luo et al. have presented that the fluorescence emission can be used to provide information on parameters such as the position and length of the plasma filament [16]. Therefore, there is a necessity to study the spectroscopy of the plasma filament in terms of the fluorescing mechanisms of different species.

The fluorescence emission from the plasma filament is very clean [17], which is in contrast to those obtained by electron impact or laser breakdown (see e.g. Ref. [18] and references therein). Previously, the fluorescence from the first negative band system ($B^2\Sigma_u^+ - X^2\Sigma_g^+$ transition) of N_2 in the plasma filament has been studied, which results from intense laser-induced multiphoton or tunnel ionization of inner-valence electrons of neutral nitrogen molecules, leaving the molecular ion N_2^+ in the excited state $B^2\Sigma_u^+$ [19]. However, after the formation of the plasma filament, the information on the chemical reactions of different species inside the weakly ionized plasma is, so far, not fully clear. In this work, we study the mechanism of generating visible and near-UV fluorescence spectra of air generated inside a femtosecond laser filament. It is found that the primary reaction $N_2^+ + N_2 = N_2 + e$ followed by the recombination with the electron is responsible for populating the electronic excited state $C^3\Pi_u$ of N_2. The N_2 fluorescence is not by direct electron–ion recombination of $N_2^+ + e$. Using a pump–probe method, the fluorescence lifetime of $C^3\Pi_u$ of N_2 at atmospheric pressure was determined to be about 85 ps.

2. Experimental setup

The experiments were conducted using a Ti:Sapphire femtosecond laser system. The laser pulses, emitted from a Ti:Sapphire oscillator (Spectra Physics Tsunami), were positively chirped to...
about 200 ps in a stretcher and amplified in a regenerative amplifier (Spectra Physics Spitfire). The pulses with a repetition rate of 1 kHz were further amplified in a two-pass Ti:Sapphire amplifier and then compressed to about 40 fs. The pulse spectrum had a central wavelength at 800 nm. The energy per pulse was 2 mJ and the beam radius was about 3 mm (1/e level of intensity). The laser beam was focused into air at ambient pressure using a fused-silica lens (f = 100 cm, thickness = 2 mm). The focused pulse propagated in air and created a stable plasma single filament, which was confirmed by the observation of a single hot spot on a burn paper. The filament had a length of about 5 cm, terminating at the position of the focal point of the lens. The induced fluorescence was collected at a right angle to the filament and then focused into a spectrometer (Acton Research Corp., SpectraPro-500i), equipped with a gated intensified charge coupled device (ICCD, Princeton instruments Pi-Max 512). The entrance slit of the spectrometer was arranged to be parallel to the plasma filament in order to increase the fluorescence collection efficiency. A pump–probe apparatus was also built in order to study the time evolution of the fluorescence emission from the plasma filament. In the pump–probe setup, the laser beam was split into two parts by a 50/50 splitter. One arm of the beam with the energy of about 850 μJ was focused by a fused-silica lens (f = 30 cm) to generate the plasma filament. The other arm of the beam passed through a delay stage, a half-wave plate and a KDP crystal. The generated second harmonic (the probe pulse) was reflected by two dichroic mirrors and then spatially overlapped with the plasma filament. The probe pulse energy was about 25 μJ. The variation of fluorescence intensity was monitored by a photomultiplier tube (PMT, Hamamatsu 7520-02), which was connected to an oscilloscope (Tektronix, TDS3054B).

3. Results and discussion

Fig. 1 shows the femtosecond laser-induced fluorescence spectrum of air obtained in the ambient atmosphere in the range of 200–900 nm. The data were averaged over 5000 shots. The ICCD gate width was set to 20 ns and the gate was opened 3 ns before the laser pulse arrived at the interaction zone. It can be seen from Fig. 1a that the fluorescence emission from the plasma filament is very “clean”, i.e., the contribution of continuum emission to the spectrum is negligible, which agrees well with previous observation [17]. The inset of Fig. 1a shows the spectrum in a higher resolution in the range of 300–500 nm. The spectral bands have been assigned to the first negative band system of N2(G0,0–G0,0) transition and the second positive band system of N2(C3Πu – B3Πg) transition [17]. The numbers in the parentheses (v’–v) denote the vibrational levels of the upper and the lower electronic states. It has been previously demonstrated that the emission from the B3Πu state of N2 results from laser-induced multiphoton or tunnel ionization of inner-valence electrons of neutral nitrogen molecules [19]. But the mechanism by which the excited state C3Πu of N2 is populated inside the plasma filament is still unclear. Here we attempt to answer this question.

There are three possible mechanisms to populate the excited state C3Πu of N2. One is by direct excitation of laser light; the second is by the excitation of inelastic electron collision; and the third is by electron–ion recombination. We first exclude the direct excitation of the C3Πu state by laser light because the transition between the ground electronic state X2Σ+ and the triplet electronic state is forbidden. We also conclude that the excitation of C3Πu by inelastic electron collision is highly unlikely. This can be explained from three aspects as follows. Firstly, it is known that in the re-collision theory of intense laser fields, the electron accelerated by the laser field will re-scatter back to its parent molecule.

Taking into account the clamped laser intensity, 5 × 1013 W/cm², inside the filament core, the ponderomotive energy [20], amounts to 3 eV and most of electrons have the energy less than 3.2 Up = 9.6 eV, which however is not enough to excite the state C3Πu of N2 (~14.1 eV for the maximum cross section of C3Πu by electron impact [21]). Furthermore, we also measured the fluorescence spectrum of air inside the plasma filaments induced by circularly polarized femtosecond laser pulses, as shown in Fig. 1b. The fluorescence bands emitted from the C3Πu state of N2 can be clearly observed. Since the process that the electron re-scatters back to its parent core, which has a total energy of 3.2 Up + IP, is very susceptible to the laser polarization, the direct excitation of the parent core by the re-scattering electron would not be the main mechanism for populating the C3Πu state of N2. Secondly, when the plasma is in the case of local thermodynamic equilibrium, the electrons with the electron temperature of T_e ≈ 5800 K [22] in the plasma filament will only have an averaged kinetic energy of less than 1 eV. The electron with this energy does not have the chance to further absorb the energy from the laser photons (this process will take about 350 fs in air [23]) within the duration of the laser pulse used here (~40 fs). Thirdly, the excitation of C3Πu by inelastic electron collision would depend linearly on the pressure, which disagrees with the experimental observation of quadratic pressure dependence, as shown in Ref. [17]. As a result, we exclude the second mechanism. This gives rise to a remarkably different consequence from that obtained from the electron impact or long-pulse laser breakdown experiments, where the population of the excited state C3Πu of N2 could be ascribed to the inelastic collision excitation by energetic electrons.

Next, we consider the possibility to populate the C3Πu state by electron–ion recombination. It should be pointed out that the
shown in the inset (a) of Fig. 2). This implies that in our experiment 80% of the ions in the femtosecond induced plasma filament can be seen in Fig. 2, no atomic N is observed (i.e., the absence of transfer process, leading to \(e^+ \rightarrow \text{N}_2\)). The insets show parts of the spectrum in a higher concentration ratio of \(N_2\) to \(C_3\). As already pointed out, the excited states are dominantly populated by LIBS and electron impact is quite complicated [25], the recombination processes regarding \(N_2^+\) and \(N^+\) are negligible [25]. Notice that at a relatively high pressure (a few Torr) the main positive constituent nitrogen in the plasma is expected to be \(N_4\) in discharge experiments [26–28], and that our experiment was conducted at atmospheric pressure, so that we conclude that the dissociative recombination through the \(N_4\) formation (\(N_4 + e \rightarrow 4N\)) is a dominant process for populating the \(C_1\) state. This is also supported by the fact that there is a very low concentration ratio of \(N_4\) over \(N_2\) inside the plasma filament (the electron density of filament-induced plasma is around \(10^{19}/\text{cm}^3\), i.e., the number density of the ionized molecules is around \(10^{15}/\text{cm}^3\)). 80% of the ions in the femtosecond induced plasma filament are due to the oxygen molecules [10], and the number density of air is about \(2.5 \times 10^{19}/\text{cm}^3\), and that the reaction rate of \(N_4^+ + e \rightarrow N_2(C_1\Pi_u) + N_2^+\) in the processes involved in the plasma is highest. As a consequence, although it has been shown that the picture for electron–ion recombination in the plasma of nitrogen–oxygen mixtures produced by LIBS and electron impact is quite complicated [25], the recombination processes regarding \(N_2^+\) in a plasma filament induced by femtosecond intense laser pulses is simply through the reaction path of \(N_4^+ + e \rightarrow N_2(C_1\Pi_u) + N_2^+\). To explore the decay property of the \(C_1\Pi_u\) state, we measured, using a pump–probe method, the integrated fluorescence emission from the \(C_1\Pi_u\) state at 337 nm as a function of the delay time between the pump and probe beams. It was expected that after the plasma was created, the application of the second laser pulse would kick off the electron from the \(C_1\Pi_u\) state of \(N_2\) (two-photon process with the probe pulse at 400 nm), giving rise to a decrease of the total fluorescence emission. Therefore, by plotting the integrated fluorescence signal as a function of the delay time between the pump and probe beams, the decay profile of the \(C_1\Pi_u\) state could be obtained. As expected, in Fig. 3, a relatively slow decay profile can be clearly observed, but an enhancement of the fluorescence signal at the delay time of \(t = 0\) also occurs (see the inset (a) of Fig. 3) (Note that the zero line in Fig. 3 represents the signal intensity obtained only with the pump beam.). To understand this enhancement, the fluorescence emission from the \(B^2\Sigma_u^+\) state of \(N_2\) at 391 nm was also measured as a function of the delay time, as shown in the inset (b) of Fig. 3. A significant increase of the fluorescence signal can be observed, which resembles to the inset (a) of Fig. 3. This behavior could be considered as an ionization enhancement of \(N_2^+\) when the pump and probe pulses were temporally overlapped. The ionization enhancement of \(N_2^+\) will further lead to an increase of the excited \(N_2\).

As already pointed out, the excited states are dominantly populated by the dissociative recombination through the \(N_4\) formation (\(N_4 + e \rightarrow N_2^+\)). The dynamics of such reactions can be described by the following rate equations:

\[
\frac{d[N_4^+]}{dt} = -k_1[N_4] + R_1[N_2^+][N_2]
\]

\[
\frac{d[N_2^+]}{dt} = -k_3[2N_2(C^1\Pi_u)] + R_3[N_2^+][\text{electron}]
\]

where \([x]\) refers to the population/density of species \(x\), \(k_1\) and \(k_2\) the spontaneous decay rates of \(N_4\) and \(N_2(C^1\Pi_u)\), \(R_1\) and \(R_2\) the rates of the reactions \(N_4^+ + e \rightarrow N_2^+ + N_2\) and \(N_4^+ + e \rightarrow N_2(C^1\Pi_u) + N_2\). Here it is reasonable to assume that \([N_2]\) is constant and \([N_2^+]\) and [electron] decay exponentially with a rate of \(k_3\) and \(k_4\). Finally, the solution of \([N_2(C^1\Pi_u)]\) was used to fit the experimental data in Fig. 3. The lifetimes obtained are \(85 \pm 15\), \(1.2 \pm 0.6\) and \(1.1 \pm 0.6\) ps, respectively. The large errors for these two short decays originate from the fact that the enhancement at the delay time of \(t = 0\) has distorted the rising part of the decay curve with an error of about 150 fs. We assigned the relatively long decay of 85 ps as the fluorescence lifetime of the \(C_1\Pi_u\) state of \(N_2\). It should be pointed out that this value (85 ps) is much shorter than the fluorescence lifetime of the \(C_1\Pi_u\) state measured in pure nitrogen at atmospheric pressure (about 1–2 ns). In order to check the reliability of the value (85 ps), we measured the fluorescence lifetime of the \(C_1\Pi_u\) state of \(N_2\) at a pressure of...
4 Torr in pure nitrogen, as well as in air, as shown in Fig. 4. It can be seen that the decay time of the C^3\text{Iu}\text{u} state of N_2 in air is much shorter than that in pure nitrogen. This discrepancy might be due to the quenching mechanism of the excited state of N_2 in air different from that in pure nitrogen. We also measured the decay curves of the C^3\text{Iu}\text{u} state of N_2 in air at different pressures and plotted the decay rate of the C^3\text{Iu}\text{u} state of N_2 as a function of pressure (the inset of Fig. 4), from which, by extrapolation, the radiative lifetime of the C^3\text{Iu}\text{u} state of N_2 measured as a function of pressure together with its linear fit (solid line) is shown.

The mean free path is thus determined only by the collision cross section. In our case, the intense laser fields can induce nonlinear electric dipole moments in the nitrogen molecules/molecular ions by, for instance, inducing an ‘instantaneous’ nonlinear polarization of the gas. This latter is recently observed in what is called ultrafast birefringence inside a gas filament [33,34]. The collision cross section for the collisions between both the polarized N_2^+ and N_2 having nonlinear electric dipole moments inside the focal volume should be much larger than that for the collisions between two unaffected neutral nitrogen molecules at STP; this decreases the mean collision time. Therefore, the formation of N_2^+ may mainly result from the collisions between the molecular ion of N_2^+ and its neighboring nitrogen molecule whose nonlinear electric dipole moments are not zero.

4. Conclusion

The visible and near-UV fluorescence spectra of air generated inside femtosecond laser filament was presented. It is found that the N_2^+ ion is dominantly depleted by the formation of N_2^+ (N_2 + N_2 = N_2^+), and the dissociative recombination of N_2^+ + e\text{ is responsible for populating the electronic excited state C^3\text{Iu}\text{u}} of N_2. Using a pump–probe method, the decay times of these species have been determined to be in the range of sub-picoseconds and picoseconds.

Acknowledgments

We thank G. Méjean and W. Liu for discussions regarding this work and F. Théberge for his assistant in the laboratory during the preparation of the pump–probe setup. The support by Q. Liu and M. Sarifi in the early part of this work is acknowledged. This work was partially supported by NSERC, DRDC Valcartier, Canada Research Chairs, CIPI, CFI, Femtotech, FQRNT and the Global COE program.

References